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By Harold Schneider, Paul G. Saper, and Charles F. Kadow

SUMMARY

The steady-state diffusion P2 and transport theory P5 solutions

of several self-shielding problems have been cobtained for multiregion
cells of rectangular and cylindrical geometries. These cells represent
8 given arrangement of moderator, fuel, and cladding; usually considered
to be homogeneous. The three-region cells studied were of sleb geometry
only and consisted of water, steel, and uranium regions. The two-region
cells were of identical volumetric proportions end compositions, differ-
ing only in the homogeneous dispersion of uranium in water. The dimen-
sions of the equivalent two regions of the cylindrical cell were chosen
so that the seme homogeneous self-shielding factor of the corresponding
slab cell was maintained. Additionsl results were calculated consider-
ing the effects of the chemical binding in water on the flux distribu-
tions and self-shielding factors.

The neutrons were assumed to be monoenergetic; their distribution
function assumed to be dependent on but one spatial coordinate, and the
scattering in the center of mass system agssumed to be spherically sym-
metricael. The P2 approximation underestimated the magnitude of self-

shielding effects relative to the Pé approximetion for all cases. Con-

sideration of chemical binding in water was unimportant in calculating
self-shielding factors for the three-region cell but could not be neg-
lected for the two-region cell where the water and fuel were homogene-
ously mixed. An electromechanical differential amnalyzer was used to
solve the P, and P3 flux equations.

JINTRODUCTION

In zero power criticality experiments, it is usual to mock up the
reactor composition in the most expedient way. A fuel-element moderstor
assembly msy be represented by fuel strips temporarily attached to
plates of cladding material or by solutions of enriched uranium salt in
liquid moderator. .In anaelyzing these criticality experiments, it is
important to know how a given fuel-element moderator assembly departs -
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from the homogeneous conditions. Inasmuch as the dimensions of repeti-
tive cells in an assembly are generally very much less than the average
mean free path, solutions of higher order than diffusion theory are re-
quired to evaluate departures from homogeneity.

The steady-state diffusion-theory solutions and the next higher
order approximation of several self-shielding problems have been obtained
for muiltiregion cells of rectangular and cylindrical geometry. The neu-
trons have been assumed to be monoenergetic, and their distribution func-
tion has been assumed to be dependent on but one spatial coordinate.
Spherically symmetrical scattering in the center of mass system has also
been assumed. The solutions of the diffusion theory P2 and the trans-

port theory P3 flux equations were obtained by a differential analyzer.
(A11 symbols used herein are defined in appendix A.)

The cases studied for rectangular geometry were (a) a three-region
cell consisting of water, steel, and uranium, and (b) a two-region cell
consisting of identical volumetric proportions and compositions except
for the homogeneous dispersion of uranium in water. The case studied
for cylindrical geometry was a two-region cell having the same homogene-
ous self-shielding factor as that of case (b).

Additional results were obtained by aepproximating the effects of
molecular binding in the water molecule by a method derived by A.
Radkowsky in a classgified publication. The thermal neutron fiux distri-
butions were used to compute the ratio R of total absorption -in uran-
ium to the total absorption in the cell.

The detailed derivation of the f£lux equations in the PS approxi-

mation in rectangular geometry is given in reference 1. The equations
for the PS approximation of cylindrical geometry are derived in detail

in appendix B. These equations were also obtained by R. R. Heeffner in
a somewhat different manner and presented in a classified publication.
ANATYSIS
Neutron Flux Equations and Boundary Conditions
For Three-Region Sleab Cell

Assuming a constant isotropic source of thermal néutrons S, for
water region A, the P3 approximation for this region leads to the
equations (ref. 1)

Lege
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Fi(x) + aF (x) )

Fo(x) + 2F)(x) + SalFl{x) =
(1)

1 1 =
ZFl(x) + an(x) + Saze(x) 0

! =
31?2(x) + 7a.3F3(x) 0 y
vhere F, is the k" (k =0, 1, 2, 3) coefficient of the Legendre ex-
pansion of the flux function. Physically, Fo is the total neutron flux
and. Fl is the net neutron current. The coefficients denoted by 8y
(k=0,1,2,3) are given by

’ﬁ:"zA'Ng‘#sl,k

vhere Ng is the number of sc_a.ttering nuclei per cubic centimeter of
region A, Z 1is the total macroscopic cross section, and GS X is the

kP coefficient of the Legendre expansion of the scattering function
The values of Og ) &re calculated for spherically symmebtric scattering
2

in the center of mass system in appendix C. The value of SA is taken

as 1 neutron per cubic centimeter per second. Identical sets of equa-
tions hold in regions B and C with the term & replaced by b and
¢, respectively, and with a zero source in these regions.

Eliminating F; and Fz from equations (1) and formally integrat-
ing with respect to x

6"’8‘0 Fodx x+3_a_l.Fé

4 9
-+t =—=\F! 4+ g Fdx = —F'
(lSal 35&.3) 2 2 f 2 15z 8y 0

with a similar set of equations in regions B and C. The equations in
this form are suitable for solution by a differential analyzer.

(2)
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The boundary conditions are

‘Fé(o) = o\ (3a)
Fi(0) = 0 (3b)
} at the extreme boundaries O and 7
F(')(T) =0 (3c)
Folr) = 0} - (3d)
FO,A(G') = FO,BCQ') ‘ (43')
Fa, ala) = FZ’B(o,) (4b)

F/! + 2F (a) + 2F! _(a)
o,A("') ZJA(“) . O,B("‘) Z,B(“) ot boundary o  (dc)

~

aq bl
F! o (a) F! () R
z;i. _ 2{2 ) (4d)
Fo,5(8) = T o(p) ) (s2)
Fp,p(B) = F, (B) (5b)

Fo, () + & 5(B) 3 Fo olB) + 2F5 o(B)

5 ) at boundary B (5¢)

1 ¢y

Ty B Fp o(B)
b

(54)

3 €3 )
Equations (4) and (5) follow from continuity requirements on the
F at the interfaces o« and B whereas equations (3) follow from the

k,s
requirement that F, end Fz venish at O eand 7y (ref. 1).

By setting F,= O, equations (2) to (5) reduce to diffusion theory
with the diffusion and sbsorption coefficients being given by D = %

end &y, respectively. The specialization of equations (2) to (5) to
two-region cases follows directly.

L68¢
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Specific slab configurations. - Figure 1 shows the rectangular
cells studied and gives the specific dimensions used. The neutron cross
sections are given in figure 2. The volume proportions of the repeated
slab array used were steel:fuel:steel:water, 26.7:1:26.7:52.3 leading
to symmetrical cell volume proportions of fuel:steel:water,
0.50:26.7:26.15. The gpecific solutions obtained correspond to an en-
riched fuel thiclkness of 3 mils (1.5 mils in the cell).

The dimensions and nuclear constants listed in figures 1 and 2 and
the values of GS X computed in appendix C were used to calculate the

coefficients which were substituted imto equations (2) to (5). For
eater accuracy and convenience the strongly absorptive uranium region
%;a = 33) wes magnified 20 times by means of a linear transformation of

the independent variable.

Results for the chemically bound cases were obtained by the use of
an effective hydrogen mase M and an average hydrogen transport cross

section 3%3, the latter having been derived by A. Radkowsky in order

to approximate the effects of chemical binding of the hydrogen. The
guantity M dis defined by

5 H 2
tr S M

where EéH is the average hydrogen scattering cross section averaged
over a Maxwellien distribution of neutron flux.

The values of M, EEE, and ESH for water at room temperature are

2.0, 31.4, and 46.7, respectively. For the unbound case, M was taken

as 1, and of as 25.6 barns from vhich it follows that ol = 8.55
barns.

From the flux distributions, the self-shielding factors R were
calculated by

total absorption by uranium,
total absorption in cell

A
uranium
L/f) FU(x)ZUéx + L//w Fsteel(x)zsteeldx
0 a 0 a
uranium steel

Fy Gy
steel steelvsteel
0 a

R=

F Z V + F
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where -F—Osteel is the average flux in steel, vU  is the volume of the

uranium region. The absorption in water is neglected since Z‘.Ezo is
negligible.

The magnitude of self-shielding effects may be measured by devia-
tions in R from the value of RH = 0.712 calculated for the case of

a constant flux throughout the cell, that is, FOU = fos , which is equiv-

alent to assuming that all of the constituents of the cell are homo-
geneously mixed.

Analyzer procedure for slab solutions. - Equations (2) subject to
the boundary conditions of equations (3) to (5) are solved by the dif-
ferential analyzer in the following manner:

The diffusion P, approximation results by setting F,(x) = 0.

From the boundary conditions, F4(0) must be zero. Since Fy(0) is un-
known, it must be guessed in order to begin the solution at the boundary
0. Using the initial Fy(0), the analyzer integrates the F, equation
until the interface o is reached. At the interface, Fy 1is continu-
ous. The discontinuous change of slope Fé B(a,) that must be applied

to initiaste the solution for region B is calculated by equation 4(c)
with Fé = 0. The Fo equation of region B is then integrated until

the interface P is reached where the discontinuous change of slope
F' (B) necessary to start the solution in region C is calculated by

eqﬁation 5(c) with Fé = 0. The analyzer then proceeds to integrate

the equations of region C until the outer boundary y is reached. It
Fé(‘r) turns out O, then the correct Fqg(0) hes been guessed. If

Fé(‘f) # 0, then another value Fy(0) is guessed until this criterion is
gsatisfied. The final results are shown graphically in figure 2.

After obtaining the diffusion answer, equations (2) were set up to
be solved simultaneously. For the first trial, the diffusion theory
Fo(0) was used, and an initial value of F,(0) was guessed. The condi-

tions of equations (4) and (5) were used to compute the discontinuous
changes in the slope at the interfaces. Thereafter, both Fy(0) and

F,(0) were guessed simultenmeously until the conditions F4(y) =0 and
Fé(‘r) = 0 were met. The total operating time for convergence turned

out to be 8 to 16 hours for a two-region cell and 16 to 32 hours for a
three-region cell.

Lese
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Equivalent Two-Region Cylindrical Cell

As shown in figure 3, the radii of the two-region cylindricael cell
were chosen such that the volume of water plus uranium and the volume of
steel were equal to those in a square cylindrical cell formed from the
dimensions used in the previous two-region slab cell. With an outer
square boundary, the neutron flux will be spatially dependent on an azi-
muthal angle in the cross section of the cylinder in addition to radial
dependence. This angular dependence is not present when the outer square
boundary is epproximated by a circular one.

From figure 3, the volume of steel per unit depth for the rectangu-
lar cell is 0.32773 cubic centimeters, and the volume of water plus ur-
anium is 0.32098 cubic centimeters for a total cell volume of 0.64871
cubic centimeters. This means that for the cylindrical cell

xa? = 0.32773
or
a = 0.3230 cm

which is the radius of the steel region, and

1b? = 0.64871

b = 0.4544 cm

the radius of the cell. The self-shielding factor RH then remains the

seme as in the slab cell (0.712) for the case of a constant flux through-
out the cell. :

The cylinders are assumed to be infinitely long and the transport
flux depends spatially on the radial distance .r from the z-axis, and
on two angular coordinates o and & +that determine the direction of
the neutron velocity vector (see fig. 4). The azimuthal angle o of
the velocity vector is measured from any fixed radial line in the cross
section of the cylinder. The polar angle & of the velocity vector is
measured from the z-axis. The transport flux cen be written as
F(r,p,a) wvhere p = cos &.

In appendix B, the tramsport flux is expanded in spherical hsarmon-
ics to give

-m)! Z2n+l
F(r,p,a) = Z Z ii ; —-,;'— Fm’n(r)cos m o Pgl(p) (B8)
n=0 m=0

e e e e e e A ———— e e = e — -
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From the orthogonality of spherical harmonics,

ol 1
(Z“S,j’o + ﬂ-sjgéo)Fj,k(r) = \[,: ‘[;— F(r,.u,or,)cos jo P](ij)(p)d.u do

vhere the ¥'s are defined as
0 m# s 1 m# s
o} = and Bm# =
s
m= g 0 m= s

When j=k=0, the right hand side 1s the tramsport flux integrated over
all directions. This is the total flux @O 0 r). Hence
2

%’O(r) = ZﬁFO’O(r). With J=k=1, the right side is the projection of
the vector flux F(r,p,a) on the radial axis integrated over all direc-
tions and is, therefore, the net neutron diffusion current @i l(r).
J

Thus, @l’l(r) = :r[Fl,l(r)a

Assuming & constant isotropic source of neutrons in each volume
element of the water-uranium region, in the P3 gpproximation (see
appendix B), the following set of equations is obtained:

F

1,1
1 2 = BS
Fl’l + 2= bOFO’O zso,o (B9a)
pro 4 iL3 g B S e =0 (Bob)
1,5% 7 “Fi,1 7% 20,2
1 Fa2
- = =
B o T gt 3 Fj o+ —2= + 30qFy 1 =0 (B9c)
12F! _ - 1B Jfze g =0 (B9d)
0,2 2722 "1 51,3 :
F F F
3,3 1,1 1,3
1 X ' - == - ! - —2= 1]+ 10b F =0
Fyzt 33 +12 (Fl,l T ) Z(Fl,:’) T ) 2 2,2
(B9e)

- —2= )+ 7 =0 B9

L68¢
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where b 1s defined in terms of nuclear constants by

’t;k = No - NSUS,k k=0,1,2,3
Transforming to fluxes & i,k and the neutron source SO,O by
20,1 = 0o x k=02
Z3k = Ty, 7 hEs
A k=1,2,3
SO,O = Z“SO,O

and after eliminating Fy ;, Fy 3, and Fz 3 from equations (B9) and
formally integrating with respect to r ylelds

L ——’-— D, % ar = + _:_. ._:_ +3 Eizﬁ W
" 3, *+ Po 0,0 0,0 ¥ — - + T
.5 | S E’:Q:.g. + 5b $ dr = 8 r-Db - ' + 3‘./’]___:_.
Ty 0,2 T 2 0,2 0,0 o] 0,0 141) 2,2
6
Azl o[ 2z, s d(l + 10b f& ar . >(>)
bl ozl 2,2 x 2,2 \r 2 2,2
ag ad
12 . 4 _ 0,2, 4 | _ 0,0
== [7‘T3 * b—JJE'c'),z f T ]"' 2 [”o,o f T ]

The first of equations (6) will hereafter be called the 4’0 o eduabion.

The second will be called the fI’ ,2 equation and the th:er the @2 2
equation.

An identical set of equations holds in region A (see fig. 3), ex-
cept that SO,O = 0 and the terms containing b are replaced by terms
containing a.

Boundary conditions. - Referring again to figure 3 the following
boundary conditions must hold:

F(b,p,a) = F(b, -y, o) at r

I
o

(7a)
FA(a,p.,a,) = FB(a.,p.,ct,) at r=a (7b)
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F(O,p.,a,l) = F(O:u;a'z) at r=20 (7c)

ay and o arbitrary
F(O,p,a) finite

Equation (7a) is a statement of the fact that no net flow of neu-
trons occurs across the outer boundary of the cell in any arbitrary
direction. Though this condition is strictly true for cylindricael cells
with square outer boundaries, it can only be approximately true for
cells with circular outer boundaries.

Equation (7b) states that the transport flux in an arbitrary direc-
tion at the interface must be continuous across that interface.

Equation (7c) is necessary because at r =0 for a given polar
angle the flux must be independent of «. This leads to the same con-
ditions on the Fm,n(r) as the requirement F(O,p,a) be finite.

Equations (7a) to (7c) lead to the conditions

Fp 1(b) = Fl,s(b) = F3’3(b) = 0

EﬁLn(a) = Eﬁ,n(a) m,n=0,1,2,3

Fl)l(O) = Fl’s(o) = F3,3(o) = FZ,B(O) =0

which jmply
1 = -
25,0 5@6,2 (8a)
&' _ = i,f%ﬁé at r = b (outer boundary) (sb)
0,2 3 1
2%
2,2
) 1)

a a &, 38, 2a
&1 ___.__]_'.@l +_}__23_ __Z_LE?_B._Q’ B +_]_'- —]'-+_§_5§,
0,0, = b, %0,0,8 *\5, " © 2 0,2, Za\b; by 2,2,B
(9a)

az 1 -8z
1 = = & . _— ~— )¢ 9b
®0,2,A b ‘I’o,z,B * (l bz | 2,2,B (op)

L68¢
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8! =By P ) (9¢)
2,2,A " bz "2,2,B " & b ) “2,2,B ¢
gh =D at r = a (interface) (9a)
0,0 = %0,0
L
®0,2 = @8,2 (9e)
A B
¥3,2 = ¥, 2 (of)
1 —
24,0 = 0 (102)
t = 0
@0,2 (10b)
, at r=20 (origin)
$ =
2,2 0 (10c)
@2,2 =0 (104)

Differential analyzer procedure for solving cylindrical flux
equations. - A neutron source of 85 =1 neutron/(cubic centimeter)

(second) is chosen in region B with a zero source in region A. First
@O o &nd @2 o are set equal to zero in equations (6) to (9), and the
J 2

resulting cylindrical diffusion equation is solved for @0,0.

The diffusion equation for region A and the one for region B are
solved in a masnner similar to that described in the section Analyzer
Procedure for Slab Solubions. This procedure gives the graphical Pz

diffusion theory answer.

Having the PZ solution, the procedure is to successively solve

the ‘PO,Z’ @2’2, @0,0, @0,2, @2’2, & 0’ and so forth, equations by using

0
the boundary conditions, equations (7} to (9), for the 2o,z equation,

the third conditions for the @2 2 equation, and the first condition
2
for the @O 0 equation.
2

Unlike the rectangular case, inhomogeneous boundary conditions occur
at r = b, but the solution is still initiated by guessing ‘i(b). The
discontinuous change in slope at the interface is calculated by the cor-
responding @ equation of equation (8). As in the rectangular case,
homogeneous conditions on the slopes of the terms ® occur at r = 0.
However, the additional requirement @z,z(o) = 0 must also be met.
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For the cylindrical case, it was not possible to set the three
equations of equation (6) into the anslyzer at the same time. There-
fore, the following procedure was used:

(1) &, , is set =0. The j‘éo odr obtained from the diffusion
2 J
3 equation is fed into the @ equation at the proper time. A
0,0 0,2 (1)
first approximation <I>O 2 denoted by *I’O 2 is obtained when the value
2 2 ‘
1 —
assumed for éo’z(b) leads to 4’0,2(0) = 0.

(2) The functi ' 0,2\ Gtained from &%), ana
e functions 0, o = - o 0,2’
ch:O 0
obtained from the diffusion <‘P were fed into the

2,2 equation A *I’él% is obtained when the 4)
o @' (o)=o and @ (o)=o

® o(b) essumed leads
2

2,2

d@o 2 ( )
(3) The functions |®' _ + —*= | obteined fram 0,2’ and
J

a®é
&) +3 —2,2 obtained from Q(l) were fed into the & equaetion.
2,2 r 2,2 0,0

Equation ‘I’(gl) is obtained when the ‘I’O O(b) assumed leads to
?
1 —

2,2

1
J®, jdr obtained from & ) were fed into the & equation. The
0,0 ( ) 0,0 i 0,2

texm &5 5 is obtained when the &, z(b) assumed leads to cI>' 5(0) = 0.
Steps 2, 3, and 4 were repeated until the <§O 0 equation solution pro-

. as, )
(4) The functions (@é 5+ 3 _—fz—) obtained from & and

duced a neutron conservation of spproximately one percent. In solving

(2)

for <'1'>2 2 and successive values of @z 27 interpolation of the function
2

ad
(6 __O_ﬁ) appearing in the & equation was necessaxry. The
2 r 2)2

curve to be used for this function had the same shape but it was inter-

mediate between ( ' _}_)(1) ( f i 2>(Z), and between

02 T

a%, 5 (2) (3) :
1 S 2 f__:_. ( ! ——-L , and so forth. The amount
0, T 0,2 T

L68¢e
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as
of interpolation of the function ( 6 2 T g %) decreased as the error
2
in conservation of the @O o equation decreased, until the last curve
J

of this function used was practically that obtained from the preceeding
@0’2 equation. For the two cylindrical problems solved, this procedure

required gbout 40 hours each.

RESULTS AND DISCUSSION
Rectangular Case

The flux distributions for the sleb cells studied are shown in fig-
ure 2, and table I presents the numerical values of the self-shielding
factors. The Pz approximation differs from the P5 approximation in

calculating self-shielding effects for the examples presented.

The magnitude of self-shielding effects are measured by deviations
in R from the value for RH of 0.712 calculated by assuming a constant

flux throughout the cell. For the two-region cell, the deviation frem
Ry was 0.0107 and 0.0150, respectively, for ¥z, unbound and bound, and

0.0048 and 0.0080 for P,, unbound and bound. For the three-region cell,

the deviations were -0.0225 end -0.0224 for Pz, unbound and bound, and
-0.0121 for P,, unbound and bound.

The deviations are positive for the two-region cell because the
presence of the source term in the water-uranium region leads to a higher
flux and, consequently, more absorption in uranium relative to the case
where the flux was constant throughout the slab cell. In the three-
region cell, the neutron flux is considerably attenuated by transition
through the water and steel regions before absorptions occur in uranium.
Hence, a negative deviation from Rp is obtained.

A consideration of chemical binding does not affect values of R
for the three-region cell despite an increased flux in water resulting
from larger average hydrogen scattering cross sections for the bound
cases. The flux is higher in the water region for the bound cases be-
cauge neutrons undergo more scabttering collisions per second which tends
to confine them there and build up the flux. This effect is enhanced to
some extent by the larger mass number M for the bound case which tends
to produce more nearly isotropic scattering that attenuates the stream-
ing of neutrons toward the steel region. Thus & higher R is to be ex-
pected for the bound cases. In the two-region cell, chemical binding
leads to a larger value of R by virtue of the increased flux in the
water-uranium region relative to the unbound case.
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Because the total neutron flux is symmetrical about the extreme
boundaries of the cell, no leakage occurs from the cell. Thus, for
steady state, the total number of neutrons absorbed per second in the
cell must equal the total number produced per second. This criterion
was applied to each of the flux curves of figure 2 as a check on the
accuracy of the amalyzer solutions. As can be seen from table I, con-
servation of neutrons in the slab case is satisfied within about 2 per-
cent for the three-region case and a 1/2 percent for the two-reglon
case; the value of R was found to be insensitive to such small devia-
tions in conservation.

Cyl:Lndrica.l Case

Unbound. - The Pz approximation & 0,0 curve and the diffusion
@0 o curve shown in figure 5 resulted from solving equations (6) to (9)

for the equivalent unbound two-region cylindricel cell problem. The
cylindrical P, @ 0,0 Compares with the P, approximation flux Fo(x)

for the slab cell in the following manner:

The values of éo 0 at the outer boundery, interface, and origin
J

are 1.184, 1.111, and 1.023, respectively, for the cylindrical cell.

The corresponding values of FO are 1.071, 1.105, and 1.160. The flux

in the steel region of the cylinder is lower implying a higher flux in
the water-uranium region to satisfy conservation.

Table II gives the results for the cylindrical cell. Unlike table
I, the average production and absorption are taken per cu.bic centimeter-
second of material. The average absorption per cubic centimeter-second
of region A, for example, is caelculated by

a .
A > s fry ) 2
L[-::O 0,0(rlav . 0,0,1(T)T30rs | 2y

xZ, =

" ).
f av ), rhry
r=0 i

After calculsating the average absorption per cubic centimeter-second in
region B, it follows that R = 0.7198 for the P2 approximation and
R = 0.7336 for the Pz approximation. Thus, more absorption occurs
in the water-uranium region of the cylindrical cell than in the same
region of the slab cell.

lecoc
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As in the slab-cell case, conservation of neutrons must be satis-
fied. The diffusion @0’0 and the P3 @O o Wwere approximetely 2.0 and
R |

1.2 percent, respectively, too small conservation wise. As for the rec-
tangular cage, values of R were found to be insensitive to small devia-
tions in conservation.

Bound cese. - The Pz and P3 curves for the bound case are shown

in figure 6. As was explained for slab cells, a higher flux in the water-
uranium region, leading to & larger value of R relative to the unbound
case 18 to be expected when the effects of molecular binding in water are
considered. This is verified from table 1I, where R = 0.7213 for Py

and R = 0.7355 for P3. Conservation 1is 2 percent and 0.7 percent lack-
ing for these curves.

Values of QO,O at the outer boundary, interface, and origin are

1.200, 1.111, and 1.018, respectively. The corresponding values for
Fo(x) in the P, epproximation for the rectangular cell are 1.060,
1.092, and 1.180, respectively.

CONCLUDING REMARKS

This study shows that the P5 approximation of transport theory as

compared with the diffusion theory approximstion glves significent dif-
ferences for the flux distributions and self-shielding factors of multi-
region cells of rectangular and cylindrical geometry. The diffusion
approximation underestimated the megnitude of self-shielding effects rela-
tive to the P3 approximation for ell cases.

Also, the chemical binding of the hydrogen in the water molecule was
found to be important for the two-region cells which considered the ur-
anium to be homogeneously mixed with the water; both the flux distribu-
tion and the self-shielding factor were affected. For the three-region
cell where the uranium was considered to be a region, the chemical bind-
ing effect did not change the self-shielding factor but did alter the
flux distributions scmewhat.

An electromechanical differential analyzer was found to be suitable
for solving the Pz and P3 flux equations.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, January 17, 1956
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APPENDIX A

SYMBOLS

used as either subscripts or superscripts to denote the var-
ious regions of a cell

radii of the cylindrical cell

defined as the difference (I - Ng 04 )
S s,k

the neutron diffusion coefficient defined by D = -]a;-

Saq

the coefficients of the expansion of the flux function in
cylindrical gecmetry

the k°B coefficient of the Legendre expansion of the flux
function in rectangular geometry

definition of “the transport flux in cylindrical geometry
chemical symbol for hydrogen

unit vectors alang x,y,z-axes

0,1,2,3

atomic mass

numbexr of scattering nuclei per cubic centimeter of a region
the associated Legendre polynomisl of indices n,m

self-shielding factor defined as the ratio of absorptions in
uranium to the total number of gbsorptions in a cell

homogeneous self-shielding factor, Ry = 0.7120
radial distance from the z-axis

unit radial vector

?onstant isotropic source of thermal neutrons, g%

chemical symbol for uranium

L68¢
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0,x,B,d

volume
variable distance used for the rectangular cell

values of x at the various boundaries of the rectangular
cell

azimithal angle of the velocity vector measured from the
z-axis

symbol for the Kronecker delta

scattering angle in the laboratory frame of rqference
scattering angle in the center of mass system

defined by u = cos &

defined by Vv = cos Gc

polar angle of veloclty vector measured from the z-axis
the totel macroscopic neutron cross section
macroscopic neutron absorption cross section
macroscopic neutron scattering cross section
microscopic neutron scattering cross section

the kﬁh coefficient of the lLegendre expansion of the scatter-

ing function

microscopic neutron transport cross section in the laboratory
frame of reference

transport flux
Al

angle between radius vector r and x-axis

azimuthal angle made by a neutron direction after collision
with the neutron direction before collision

unit vector in the direction of neutron velocity
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APPENDIX B

THE P3 APPROXIMATION FOR CYLINDRICAIL GEOMETRY
The general steady-state monoenergetic Boltzman transport equation
?’cating)the conservation of neutron flux F for an element of volume is
ref. 2

o

w8 + mo@eeR) = [ o@D+ sEB) (a1 g
Q

-§ unit vector in the direction of neutron velocity

s element of solid engle sbout direction '

N number of nuclei per cubic centimeter

NS number of scebtering nuclei per cubic centimeter

ag total microscopic; neutron cross section

Nscs(ﬁ,ﬁ') probability per centimeter that a neutron traveling in the
-
direction K' undergoes at ; a scatter_:l}.ng collision
into a unit solid angle about direction &

- Thg first term represents the net number of neutrons with direction
® at r leaking out through the faces per cubic centimeter ger second.

->
The second term is the loss of neutrons of direction & at r per cubic
centimeter per second due to ebsorption or scattering collisions. The
third term is the nmumber of neutrons per cubic centimeter per second

traveling in the dﬂ_?ction _}2" that undergoes a scattering collision

into the direction 2 at r. The last term is the number of neI_.l:crons
->

produced per cubic centimeter per second with direction @ at r.

The following simplifying assumptions are made:

(1) The neutron flux has cylindrical symmetry, that is, F is in-
dependent of @ and 2z, the spatisl azimuthal and axial coordinates for

_’
directions of R are fixed relative to the direction of -1"

‘ -

(2) The medium is isotropic, which implies o(R) = g, & constant,

and the scattering is a function only of the angle between the initial
direction of the neutron velocity and the finsl direction.
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(3) The scattering is spherically symmetrical in the center of mass
system.

Referring to figure 4 in which the direction of the neutron veloc-
ity vector at r is given by polar angle & and an azimithal angle o
in the plane of the cross section,

$=1sink cos(a,+¢')+-5 sin £ sine + @) + k cos &
v v >
=r sin & cos o + P sin & sin o + k cos & (B2)

where ¥ is a unlt radial vector and (p is a unit vector perpendiculaxr
to T in the plane of the cross section. Then

X
9VF=(rsinEcosm+cpsin§sina.+kcos£) -a;+;$+k

M

= gin £ cos o Ba; F(r,E,a) + % sin £ sin o %F(r,&;a) +

cos & % F(r,t,a)

In computing sin £ sina O F(r,?—;,a,), 2 must be held fixed as o

chenges. (With 32 held fixed, E and o do not vary with r, or 2z,
as either varisble alone is cha.nged ) This requires that & and o
be functions of ¢ despite no explicit dependence of F on ¢.

Therefore

2-VF = sin £ cos a % + -i_—'- sin £ sin a{-aa—g F(r,g,a) g—g+ % F(r,z,a) %%}
(B3)

since cos & 5% F =

->
The condition that & rema.in fixed as ¢ changes requires that £

and ¢ + a, the angles made by 52 and the fixed z- and x-direction,
respectively, be constant so that

x
6= ©

o
36~ 1

(B4)
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Letting p = cos E, substituting (B4) into (B3) and noting that
assumption (2) implies

—

- 1 .
03(9':9') = on Us(l—’-o)

> >
o = cos(®,R') = cos £ cos E' + sin & sin &' cos(a - a')

equation (Bl) becomes

1l/2
(1 - p?) / {cos a,gf—. - SiEG'%FE + No F(r,p,a) =

1 kit Ng
‘[; L I Us(l-’-o)F(r)l"-';d")da"d—ll’ + S(r,u,a) (85)

og(ip) is expanded in a series of Legendre polynomials to give

-

) 21+1
oglro)d = Z 5 9,1 F1lko)
=0

where
1
Gs,z = ‘/—]‘- US(”O)PI(LLO)G“O

It is to be noted that US’O is the total scettering cross section and
Og 3 is the total scattering cross section times the average cosine of
J

the scattering angle.

By the addition theorem for Legendre polynomials,

Nao N z :
S°S S 21+1 :
on (ilo) = o1 > US, ZPZ(IJ')P]‘(U- ) +

o 1
Z\, Z &;ﬁ;: (2“1)"3,11’1{1(“)1’21(“')‘308 M(a-o')
7’::0 N

M=1

L68e
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vhich gives the variation of the scattering function in terms of the
desired variables. Equation (B5) becomes

1/2
(1 - p2) {cos m% - Bi‘; a’% + No F(r,u,a) = S(r,p,a) +

1 7
N5 § : 21
'Ef f F(r,u',a’) 2 US’ZP'L(IJ-)Pz(lJ-') +
-1 V-

1=0

o ]
Z 2 %_}ﬁ : (2141)0 PM(u)PI;'I(u')cos M(e - o')dda’ aut  (B6)

1=0 M=l 5,1

Symmetry demands that

F(r,u,a) = F(r,u,-a)
(87)
F(r,u,a) = F(r, -p,a)
The transport flux is expanded in a set of spherical hsrymonics to
glve

(- -] [ - I
n-m)! 2n+l
F(r,p,a) = ;; )T e Fm,n(r) cos mo PE'(}.L) Fm,n o (B8)
n

m>n

Harmonic terms containing sin o do not appear in (B8) because of the
first of conditions (B7). The second of conditions (B7) implies that
Fo n{r) = 0 for either subscript even and the other odd since

2

PZI("”) = (-1)™ P;l(p.). In the Pz approximation, Fm,n(r) is neglected

vhen n®> 3. The function S(r,p,a) is likewise expanded in spherical
bharmonics (for isotropic sources only the m = O terms are present).

Multiplying both sides of equation (B8) by cos jo Pﬁ‘j)(p)dy. da,
and Integrating over all p and o gives

(Z:t 53,0 + 7 5#0)%’]{&) =(/_j£l F(r,p,a)cos jo P](Kj)(p)d.u da,

[ T e e e e e e v e o+ s e~ e s+ et e —aea.
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J,k=1,2,5 in the Pz approximation. The ordinary Kronecker delta

qus is defined as

0 m#s

1 =5
. 1

where Sm#s is defined as

1 for m % S
5) =
m%S O for m=S

This relation follows from the orthogonality properties

0 m#
%
j = 9 = =
L/{; cos ma cos jo 4o m,J(% 53%0 + 2x 63’;) t m=j#0
28 m=J=0

1
f Pr(lj)(u)Pl({j)(u)du = Eﬂ : FZ-J %0,k
-1

As is explained in the ANALYSIS section, the total neutron flux
= ; = @ ;
ZﬁFo,o(r) @o,o(r), the net neutron current ﬁFl,l(r) l,l(r)’ and
the total source strength 2xS =B .
0,0 0,0

Substituting equation (B8) into (B6), multiplying (B6) by
cos Jja Pﬂ(u) do, du and integrating over o from - to w and then

integrating over i from -1 to 1 (over all directions) and after
dividing through by 2x

lIn this appendix, it is particularly convenient to introduce a
"modified" delta function notation defined in this way.

raoc
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-m)! 1
DY, faonl 2ol f R IR IR EYNES
n=0 m=0
7
f Wy ()
cosacosmcosjmd&++ 8in o sin ma cos Jjo do +
-1t -1

1 1
Fj,k(r)(&BJ,o +3 6:1%0) = SJ,k(r)<83,o + 35 8#0> +

1
NgOg 3 Fj’k(r)(ﬁj,o + 3 5#0)

Performing the integration over «, the leakage term in the PS
approximation can be written

1 - n-m)! 2n+l 3 2 1/ (3) (mj 3
1S iz a2 0 e e, {F;I,n > 8,100 4
n=0 -1 P=0

3
mF
vy Zmn
D o (Bj,p—l * 63,1;>+1> Fon ¥ T3 ®n,p°3,1p
p=0
3
s man
m:P J;P'l .J)P‘*‘l r
or
- 1 1
) /2 ¢,
Py [ oo T e fy, Telre,
=0 p=0 -1 ’
@ 3 1
. 1/2 F
n-p): 2otl -2 (2-1)(,)p(P) poil
yry i (1-u% p ()P (n)ap {F* +p T8y o4+
;W n+p L k M p,n r (% °3,p-1
o 3 1
) 1/2 F
Z Z 2+p i _zﬂ (- u?) (P+l)(u)P(P)(u)du {F' - —R“—rn}% 8 el
n=0 p=0 -1 ’

vhere J has positive values on_'l.y..

e e e e ————————— e — e —————— — e
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After evaluating the remaining integrals in the leskage term (ref.
3, pp. 102 to 104) the Boltzman equation can finally be written

k(le+l , \ Fy ka1 Fy k-1
—E—Ly 8 a1 T - Lkl s
a(2x [O,R-l Fo,1:+3.] 5,1 T +1) [1,k+l T 1,k-1 T 1,0

3
L Ppylurl _ - Fpkl
E a(ze) |Tp,el T o1 | %1t

< oF
z 4(2;’1) Eﬂpﬂ) SR RE R —Eﬂ) - et P)( Bkl —‘21"}_4'1'):' S5,p0 ¥
=0

7 k(r)(‘1 otz 8#0) Ngog 1y By () l}‘j’o +z 5#0] +8, () (8,;],0 +%8#0)

In the P:5 approximation, a set of six simultaneous equations in
terms of F (r) are generated by letting j and k independently
teke on 'bhe va;l.ues 0,1,2,3

(m or n< 0

m or n~>3

Fm,n(r)z 0 for { .

Leither subscript even and the other odd

Asguming a constant isotropic source of neutrons, the following
set of similtaneous equations are generated:

Fl 1 (
! —2 Zb = 25 B9a
Fl it 8% 0 =25 5 )
F F
1,3 1,1
' e S 0 9b
Fl, 5+t Fl’ 2=+ lOszo,z (B9b)
2FL o - 2F! 1y + 22,55 =0 (B9c)
0,0 ~ @o,2 v 5 ¥z 2t 11,1 =

L68E
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oLy _fze o =0 (B9a)
0,2 2%2,2 7 31,3
Fi g+ w—ié + lZ(Fl',l - F—llf—l) - z( 15" F—lrzé> + 1005F; 5 = 0
(BYe)
15<?é 5 - Ef?zﬁ) + ThaFz 5 = O . (Borf)
L] T ) .

vhere by, = No - NSBS’k; k=0,1, 2, 3.
By setting Fp , and Fp, 5= 0 in (B9c), equations (B9a) and
2
(B9c) reduce to the ordinary cylindrical diffusion equation when they
are transformed by
axn Fo,k ==‘§O,k
ﬂ{Fj,k = éj,k

a2 85,0 = 80,0
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APPENDIX C

CALCULATION OF COEFFICIENTS IN Pz APPROXIMATION
NEUTRON FLUX EQUATIONS

The term &) appearing in equations (1) is given by
8 = Z* - N’go‘g’k x=0,1,2,3 (c1)

where the superscripts (which will hereafter be dropped) refer to region
A. The og, eappearing in (Cl) is the coefficient of the k'B Legendre
2

polyncamiel in the series expansion of the scattering function, that is

21+1
oguod = Z 5 P10l
=0
By the orthogonelity of Legendre polynomials
1

o5 1 = f a5 (0 By g ) (c2)

-1

The physical meaning of crs o &nd O'S 1 can be deduced fram the
following considerations:

The term NSUS(Q.,Q ) is the proba.bility per centimeter that a neu-

->
tron traveling in the direction 9' is scattered into the direction &

from following sketch. Scattering is assumed to depend only on the

0

o] 2

L68¢S
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angle 6 (or its cosine) where 2.8 =cos 0= o Then a quantity
NSUS(pO)duO can be defined as the probgbility per centimeter of a

neutron being scattered from g into an elemental ring of area
21 duy with direction cosines between Ho and Bo + duo. Then

. K
Ngdsg, f 0g(&,8" o = Ngog(uo)an,
¥=0

or
Ngoq(2,2) == LA

For k = 0, the right side of equation (C2) is the scattering

. function integrated over all velocity directions so that og o 18 the
J

total microscopic cross section for scattering.

For k=1, Pl(uo) =hy sothat og; is 05,0 bimes the average
cosine Ho of the scatiering angle.

Now
05(”0)6#0 = P(l-"o)dl-’-o GS,O

where %5 o is the probability that a neutron 1s scattered and

2
p(po)duo is the probability that the scattered neutron has the direc-
tion cosine Ko between Ho and Wy + duo. This probability must be

independent of the coordinate system, therefore
p(ugldu, = p(v)®

where p(v)dv is the probability of scattering into the angle
2 d(cos ec) in the center of mass system where 6, is the scattering

angle in the center of mass system end V = cos 0.

Assumption of spherically symmetrical scattering in the center of
mass system implies

23tdv 1
PVl = Fr =5 av

Therefore,

o

%,0
og{ipldny = —4— av

e e e e e . W m o r————— e
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Applying the laws of conservetion of energy and momentum for elas-
tic collision of a neutron with a stationary nucleus of mass M, yields

Myt ‘
(M% + 2Mv + l)l/2 (e

‘_lo=

which relates the cosine of the scattering angle in the laboratory sys-
tem to that of the center of mass system. Equation (C2) can then be

written .

¥ 9,0
°S,k=f —é"-—Pk(uo)dv (csa)
-1

Equation (C3) enables the integral in (C4) to be evaluated for
k=0,1,2,3 in a straightforward menner with the results

9,0 T %,0 )
g io
s,1 = 3 “g,0 g
(cs5)
0g 5 =g 4% - 3L L 3 - 1) n (ML)
s,2 =%,018 " 8 " 3M Mt 1
Og,3 = O J

The special case of an infinite atomic mass A, (often assumed for
heavy nuclei) gives °5,1 = 95,2 = 9,3 = 0 which follows from equetion

(c5). Scattering is then isotropic in the laboratory system of reference,
as well. For light atomic nuclei, the scattering is predominently for-
ward in the leboratory system.

* Equations (C5) enable the calculation of oy, for the Pz approx-
2

imation of tremsport theory. In particular, the values obtained were
used to calculate &, (eq. (Cl)), by, and c, appearing in the flux

equations for the regions A, B, and C. Only the hydrogen nuclei of the
water region were assumed to have a finite mass number.

L68¢
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TABLE I. - RECTANGULAR GEOMETRY

NACA TN 3661

[Homogeneous value of Ry = 0.712.]

Total Total Total fuell R R - 0.712
production|absorption| absorption
Self-shielding factors for two-region cells
Transport theory,’P3
Unbound 0.1993 0.1987 0.1436 (0.7227| 0.0107
Bound .1993 .1993 .1449 .7270| .0150
Diffusion theory, PZ
Unbound .1993 .2006 .1438 .7163| .0048
Bound .1993 .1989 L1432 .7200( .0080
Self-shielding factors for three-region cells -
Transport theory, P5
Unbound 0.1993 0.2028 0.1399 [0.6895|-0.0225
Bound .1993 .2039 .14086 .6896 | -.0224
Diffusion theory, P,
Unbound .1993 .2006 .1404 .6999| -.0121
Bound .1993 .2026 .1418 .6999 ( -.0121

L1682
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TABLE II. - CYLINDRICAL GEQMETRY
[Rg = 0.712]
Production|Absorption| Fuel R |R - 0.712
per per absorption
(cc)(sec)| (cc)(sec) per
(ce){sec)
Self-shielding factors for two-region cell
Transport theory, Pz
Unbound 1.000 0.9880 0.7248 |0.7336| 0.0216
Bound 1.000 .9932 .7305 .71355 .0235
Diffusion theory, P, |
Unbound 1.000 L9790 L7047 .7198| .0078
Bound 1.000 .9802 .7070 .7213 .0093
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Figure 2. -~ Neutron flux distribution.

Molecular binding effects neglected.
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Figure 2. - Continued. Neutron flux distribution.

lesg



1.6

1.3

Flux, Fy

‘ 0G-5 baok 3837

T99: NI VOVN

1.5

b

&

i HEC : : : : SrEsH i T I n

bass T in 1 T T 1 T 1] R T 11

H 0.1993 cm . G 0.2055 cm HHEE 0.0762 em
Rég;ton 4 : t Reglon B Sl Region C

W i H Btesl e Urantum

= zg = 1.84 Ig = 0.8L HEZg = O

g, = O § 3, = 0.85 I, =33
7 = 1.84 it 7 = L.06 t I =33
M = 1.0 : HN = EM =
By = 1 vewtron/ (cc) {ssc) ; B =0 £ = 0

L N8 o 0,0666x10% atoms/cc i I

HPg ('I‘ransport tlhaory) ; i i

EP, (DLffusion theory) : : :

.::FO: i 2 ™
1.2 5 : e
1.1 i : i WL
1.0§ 1 R X i

Variable distance, x, cm

(c) Three-region cell, Molecular binding effects neglected; uranium reglon shown
wegnified 20 times.

Flgure 2. - Comtinued. KNeutron flux distribution.

Transport flux coefficient, Fz

&

SE



Flux, Fo

L

ML ST R

0.2055 cm

1T
it
R
T

R R
T it

= Uranium

s

5

2, =33

a

JEB"O

7 = 33
H53H=°

Il_q_ 1

= b i [ S rromy=me
oy ir T -

' Bc =a 0

£ 0.0762 caf]

 Reglon C |

L LT T
it S S
HiH : i !
. 3
1.4 Pz Diffusion th_OOI'Y i e (T L T é
Ty et e e e e e R P [ il
E e Tt ERTHE :}f..JEE H R idill

H : H - I J::- .-E-.:-: C-

Bl ) it 15

HHEY . = 3.2465 H HihEy
3 T

20 w0 iz : i

5 = 5,2465 T =
HH = 2,0
8, = 1 neutron/(cc) (sec)

-=::1<:1?ﬁ = 0,0688x102% stoms/cc HE:
T RIS S g For Pl
tian pEAE “_;; P Fek H ] FQ’ F E::F'

Eft i i T i

: HHIE ] =

L

(d) Three-ragion cell,
mAgnified 20 timea.

.2

Variable distance, x, cm

.4

Molecular binding effect of wster approximated; uranium reglon shown

Figure 2. - Concluded.

Neutron flux distribution.

lssg

&

B

Transport flux coefficient, F2

3c

T99E R VOVH



JoT|

NACA TN 3661

}

fs =3

—
os
SO

I:e]_éz/is Si -

0.19926

0.80542

DN

Water +V, ot Steeth Water +
uraniunlééz9/ uranium
0.80542 0,20345

cm R,

cm

(a) Used to obtain equivalent two-

region cylindrical cell.

Region B,
water + uranium

i 1 %§§
R 3 ee pod

i
e Eﬁimgﬁggﬁﬁi
iy = 8 = 0.5250;

2,

r=Db = 0.4544 cm

(b) Equivalent two-region cylin-

drical, cell.
N

Figure 3. < The cylindrical cell.

37




38

»P‘_,c

[T )

NACA TN 3661

.|

Figure 4. - Cylindrical coordinate system.
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